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1 INTRODUCTION

Accurate real-world location data from Cyber-Physical Systems (CPS) are already crucial for CPS control and location-
based applications, and stand to become even more important as systems with dynamic context-aware functionality
become more commonplace. However, many applications that depend on location data are subject to dangerous failure-
modes when the CPS providing location information fails. For example in the hospital tracking context, a localization
system failure could be life threatening. Likewise, a platoon of military vehicles trying to localize themselves with
respect to each other while some of the cars are being hijacked cannot afford location errors. Due to demonstrated
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2 Weber, M. et al

vulnerabilities in Global Navigation Satellite System (GNSS) spoofing [Humphreys et al. 2008], an adversary may
mislead or attempt to crash an autonomous vehicle or robot in a similar ploy.

Fortunately, many localization systems with sensors embedded in the environment resemble distributed sensor
networks (eg. [Lazik et al. 2015]) where a measurement failure at a particular sensor may be isolated from other sensors.
This distributed sensing can provide a great deal of redundancy in position estimation to aid in detecting and eliminating
location-attacks and coordinated sensor failures. We explore this scenario in this paper through the lens of range-based
localization: distance measurements are known between sensors, only some of which have known locations, and we
seek to localize the entire network in the presence of adversarially corrupted measurements.

We proposeGordian1, an attack and coordinated sensor failure detection algorithm. Detecting and mitigating attacks
on sensor data is, in general, a combinatorial problem [Pasqualetti et al. 2013], which has been typically addressed
by either brute force search, suffering from scalability issues [Pasqualetti et al. 2013], or via convex relaxations using
algorithms that can terminate in polynomial time [Fawzi et al. 2014] but are not necessarily sound. On the other side,
recent advances in combinatorial search techniques and in particular those used in Satisfiability Modulo Theories
(SMT) solvers showed combinatorial problems can be cast into smaller problems that can be solved efficiently. As
we demonstrate in this paper, our algorithm modeled after these new Satisfiability Modulo Convex (SMC) solving
techniques [Shoukry et al. 2017] are a neat fit for range-based attack detection.

This paper presents the following contributions:

• Sufficient topological and combinatorial conditions for attack detection in a noiseless network.
• Gordian, the first provably sound and complete coordinated attack detection algorithm over well-formed
noiseless networks.
• A novel trilateration counterexample generation procedure for Gordian’s SMT solving architecture that makes
combinatorially intractable attack detection problems practically solvable in reasonable time.
• A localization algorithm appropriate for noise on both distance measurements and anchor coordinates.
• A generalization of the standard graph-embeddability problems studied in noiseless localization to a notion of
approximate embeddability, appropriate for noisy distance measurements and anchor coordinates.
• A convex decision procedure for testing approximate embeddability of noisy networks at a desired confidence
level, enabling the extension of Gordian to the noisy case.

In Section 2 we introduce conventional and secure localization algorithms, define our formal model of localization
problems and introduce rigidity theory. Next in Section 3 we define our threat model, the attack detection problem,
and identify an attack tolerance property for which we prove sufficient topological and combinatorial conditions. We
present Gordian’s architecture in Section 4, prove the algorithm sound and complete, and elucidate the algorithms
for embeddability testing and counterexample generation. Section 5 extends localization, embeddability testing, and
Gordian to the noisy case, which we evaluate in Section 6. We conclude in Section 7.

2 BACKGROUND AND RELATEDWORK

Researchers have proposed a wide variety of localization schemes [Liu et al. 2007] including techniques as diverse as
RF signal strength and fingerprinting [Honkavirta et al. 2009; Savvides et al. 2001], propagation time of an ultrasonic
pulse [Lazik et al. 2015; Priyantha et al. 2000], and range-free techniques[He et al. 2003]. Many of these techniques

1The name Gordian is a reference to a legend of Alexander the Great in which he “untied” the impossible Gordian Knot by slicing it in half with his
sword.
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assume complete trust of the entire localization system. The field of secure localization goes a step further to explore
methods that work in the presence of malicious attacks.

2.1 Localization Networks

We apply a simple and common model [Anderson et al. 2010; Biswas and Ye 2004; Eren et al. 2004; Liu et al. 2008; Moore
et al. 2004; Savvides et al. 2001; So and Ye 2007; Yang et al. 2013a] of range-based localization problems: Incomplete
pairwise distance measurements are known between devices. Some devices, referred to as anchors, have known positions
and other unlocalized devices do not.

More formally, we assume a set of 𝑛 nodes representing sensors S = {𝑠1, 𝑠2, . . . , 𝑠𝑛} with 𝑆 = {1, 2, ..., 𝑛} being their
index set. 𝑆𝑎 ⊆ 𝑆 represents anchor nodes, defined as nodes with a priori measured locations 𝑝𝑎 : 𝑆𝑎 → R2. The rest,
𝑆𝑥 = 𝑆 \ 𝑆𝑎 , have unspecified locations. An undirected graph 𝐺 = (𝑆, 𝐸) is a natural model for the topology of a sensor
network where the sensor nodes are treated as graph nodes and edges 𝐸 represent measured internode distances. Let
𝐸𝑎 ⊆ 𝐸 represent the edges (𝑖, 𝑗) such that both 𝑖, 𝑗 ∈ 𝑆𝑎 and 𝐸𝑥 = 𝐸 \ 𝐸𝑎 . The weighted extension of G is given as
𝐺𝑑 = (𝑆, 𝐸,𝑊 ) where𝑊 : 𝐸 → R+. Combining all of the above, we formally define:

Definition 2.1 (Localization network). A localization network 𝑁 is a tuple (𝑆, 𝐸,𝑊 , 𝑝𝑎) such that 𝑆 is a set of

nodes, 𝐸 is a set of edges,𝑊 : 𝐸 → R+, 𝑝𝑎 : 𝑆𝑎 → R2, where 𝑆𝑎 ⊆ 𝑆 .

Let the function 𝑝 : S → R2, be a “placement”, assigning coordinates 𝑝 (𝑠𝑖 ) ∈ R2 to each sensor node.
Now assume 𝑝∗ is a placement representing ground truth positions of the nodes. The euclidean distance from node

𝑠𝑖 to 𝑠 𝑗 is given by 𝑑𝑖 𝑗 = ∥𝑝∗ (𝑠𝑖 ) − 𝑝∗ (𝑠 𝑗 )∥2. With ↾ as the set restriction operator, we are now equipped to pose the
exact (noiseless) localization problem as follows:

Problem 2.2 (Exact localization). Given a localization network 𝑁 = (𝑆, 𝐸,𝑊 , 𝑝𝑎) with an unknown ground truth

placement 𝑝∗ s.t.𝑊 (𝑒𝑖 𝑗 ) = 𝑑𝑖 𝑗 and 𝑝𝑎 = 𝑝∗ ↾𝑆𝑎 , find 𝑝∗.

Fig. 1a shows an example localization network and placement which will be a long-running example in this paper. It
has six anchors (nodes 1 − 6) represented by squares and one non-anchor (node 7) represented by a circle. Lines in
the diagram represent measured internode distances, where the length of a measurement (i.e.𝑊 (𝑒𝑥𝑦) ) from 𝑠𝑥 to 𝑠𝑦
corresponds to the length of the line from node 𝑥 to node 𝑦. The placement of the nodes is intended to correspond to
their position on the page. In other words this is an embedded graph, not an abstract graph representation. Lines from
anchors to anchors are fainter than the lines to node 7 because we wish to draw attention to the latter. Fig. 1 (a) is an
example of an embedding (also called a realization) because all the measurements and anchor positions are consistent
with the placement 𝑝 , i.e. ∀𝑒𝑖 𝑗 𝑑𝑖 𝑗 = ∥𝑝 (𝑠𝑖 ) − 𝑝 (𝑠 𝑗 )∥2 and ∀𝑠𝑖 ∈ 𝑆𝑎 𝑝𝑎 (𝑠𝑖 ) = 𝑝 (𝑠𝑖 ). We say a localization network 𝑁 is
consistent when it is embeddable, i.e. there exists a 𝑝 which is consistent with respect to 𝑁 . Were Fig. 1 (a) to be an
inconsistent placement, one or more of the lines in the diagram would fail to meet up with a node at its endpoints or an
anchor node would not be located at its designated position. This is the case in Fig. 3. We use the terms “consistent” and
“embeddable” interchangeably in this paper.

2.2 Rigidity

Perhaps the most important question to ask about a localization network in the context of attack detection is whether
or not 𝑝∗ is the unique consistent placement with respect to 𝑁 . This property is known as unique localizability.
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Fig. 1. Two different embeddings (a) and (b), for the same localization network that is rigid but not GGR.

If a localization network has two distinct embeddings in the absence of attack, an adversary does not have to take
any action to create ambiguity in the localization result as is the case for the two embeddings shown in Fig. 1. The
hollow circle in Fig. 1b for node 7′ represents the alternative consistent placement for 𝑝 (7) ≠ 𝑝∗ (7). Even without
attacks, there are two ambiguous localization solutions.

Eren et al. [Eren et al. 2004] identified Global Generic Rigidity (GGR) as the link between sensor network localization,
the mathematical concept of a framework, and the theory of structures from mechanical, civil engineering, and physics.
Intuitively, a framework is a collection of solid rods connected at flexible joints. A rigid framework will not deform
when perturbed in a planar direction. A GGR framework is not only immune to planar deformation, it cannot be
discontinuously manipulated (such as the 3-dimensional flip of node 7 along the line connecting nodes 1 and 4 in Fig. 1)
into another configuration. Eren et al. also proved a network 𝑁 is uniquely localizable if and only if it has at least three
anchors in general position and its corresponding grounded graph (the framework obtained by treating a localization
network’s graph of measurements, 𝐺 , as rods) is GGR. For simplicity we will write that 𝑁 is GGR when its grounded
graph is GGR. [Eren et al. 2004]

A globally rigid framework can be identified by topological conditions: 𝐺 is 3-connected (at least three edges must
be removed to partition 𝐺) and 𝐺 is redundantly rigid (any one edge may be removed from 𝐺 and the resulting 𝐺 ′

is still rigid) [Jackson and Jordan 2003]. We further assume that the frameworks under discussion are generic, i.e.
the coordinates of 𝑝 are algebraically independent over the rationals. Essentially, the generic requirement forces the
framework’s 𝑝 to not be entirely co-linear or otherwise degenerate. The GGR property is efficiently testable by a
randomized algorithm [Gortler et al. 2010]. We refer the interested reader to [Anderson et al. 2010; Eren et al. 2004] for
a more thorough presentation on rigidity and localization.

2.3 Localization Algorithms

Localization algorithms attempt to solve the exact localization Problem 2.2. From a complexity perspective, just
determining if a graph has an embedding (that preserves the 𝑑𝑖 𝑗 ) is known to be NP hard [Saxe 1979]. Researchers tackle
intractability through two broad classes of methods: local methods that enable each node to determine its location
from its neighbors without seeing the big picture and global methods that simultaneously localize all nodes from a
perspective external to the network. Gordian makes use of both.
Manuscript submitted to ACM
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The most basic local algorithm, provided by Eren et al. is iterative trilateration, but it is only possible for a specific
kind of trilateration graph. The definition of a trilateration graph is given in [Eren et al. 2004], but informally it can be
thought of as a localization network that admits the following localization procedure: Begin with a set of three nodes
{𝑠𝑖 , 𝑠 𝑗 , 𝑠𝑘 } with known locations (initially these can be anchor points). Find a node 𝑠𝑛 that is currently without known
location and is connected to three nodes 𝑠𝑖 , 𝑠 𝑗 , and 𝑠𝑘 in the known set. Draw three circles centered 𝑝 (𝑖), 𝑝 ( 𝑗), and 𝑝 (𝑘)
with radius 𝑑𝑖𝑛 , 𝑑 𝑗𝑛 , and 𝑑𝑘𝑛 respectively. The value of 𝑝 (𝑛) is given by the unique intersection of the circles. Add 𝑠𝑛 to
the known set, and repeat the above procedure until all nodes are in the known set.

Eren et al. prove trilateration graphs are uniquely localizable (an important property for Gordian’s counterexamples
phase – see algorithm 2), and can be localized in polynomial time. However the procedure is incomplete in the sense
that it fails to localize classes of uniquely localizable graphs such as bipartite and wheel graph networks [Moore et al.
2004].

Alternatives to the node-centric localization methods discussed above use some sort of optimization framework to
localize all nodes at once [Anderson et al. 2010; Biswas et al. 2006; Biswas and Ye 2004; So and Ye 2007]. Although actual
formulations vary, these approaches frame localization as an optimization problem and (very broadly speaking) aim to
minimize the sum of some sort of squared errors resembling

argmin
𝑝 (𝑖),𝑖∈𝑆𝑥

∑
(𝑖, 𝑗) ∈𝐸𝑥

��∥(𝑝 (𝑖) − 𝑝 ( 𝑗)∥22 −𝑊 (𝑒𝑖 𝑗 )2��
𝑊 (𝑒𝑖 𝑗 )2

𝑠 .𝑡 . ∀𝑖 ∈ 𝑆𝑎 𝑝 (𝑖) = 𝑝𝑎 (𝑖) (2.1)

where 𝑝 (𝑖) ∈ R2 is a decision variable representing the estimated location of sensor 𝑖 , and𝑊 (𝑒𝑖 𝑗 ) is the measured
distance between 𝑖 and 𝑗 . Since distances are squared, the denominator𝑊 (𝑒𝑖 𝑗 )2 normalizes the influence of large edges
in optimization.

These methods commonly rely on a relaxation of the general optimization problem in Equation 2.1 from a non-
convex program in two dimensions to a Semidefinite Program (SDP) in a higher dimensional space (refer to (4.3) for the
statement of the Biswas-Ye SDP relaxation (BY-SDP) used by Gordian). The relaxation was first proposed by Biswas
and Ye [Biswas and Ye 2004] with good empirical performance, then proved to have important theoretical connections
to rigidity and unique localizability [So and Ye 2007]. Most significantly, it is shown [So and Ye 2007, Theorem 4.2] that
a two-dimensional graph is uniquely localizable if and only if the max-rank BY-SDP solution is rank 2.

In this paper, we seek to address the attack detection and secure localization problems with our Gordian algorithm.
According to Zeng et al.’s survey [Zeng et al. 2013], secure localization methods in the literature fall into three broad
categories: prevention methods which prevent the sensor network from collecting bad data in the first place, detection
methods which identify and remove bad localization data, and filtering methods which are robust to bad localization
as part of the localization procedure. Under this taxonomy, Gordian is a centralized detection method designed to
identify and eliminate distance-measurement attacks (i.e. attacks which corrupt inter-node distance measurements) and
anchor position change attacks before localization.

Prevention schemes usually require special-purpose hardware on nodes, or specific ranging techniques. SeRLoc [Lazos
and Poovendran 2005] for example requires directional antennas. Other techniques assume the sensing mechanism
used in ranging prohibits an adversary from shrinking range measurements. In the case of RF time-of-flight sensing,
an adversary would have to break the speed of light to decrease the measured distance between nodes. This property,
known as distance bounding, is the key requirement for Verifiable Multilateration [Capkun and Hubaux 2005] inspired
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techniques. Detection methods in the literature such as [Liu et al. 2005] focus on identifying malicious nodes by
catching them in a lie. In Liu et al.’s scheme, some sensors with known position pretend to be unlocalized. If the
ranging information they receive from another node is incorrect, foul play is evident. Similarly, Liu et al. propose a
voting-based scheme for distance measurement attack detection in which nodes vote to determine which measurements
are consistent with their observations [Liu et al. 2008]. Filtering methods attempt to perform accurate localization in
the presence of attacks. Li et al. [Li et al. 2005] propose localization via least median squares (LMS) instead of the more
typical least squares (LS) approach. If attacks always appear as statistical outliers, Li et al.’s method will filter them out.

2.4 Related Statistical Methods

Statistical filtering techniques for localization (which are distinct from the before-mentioned filtering algorithms for
secure localization) have recently been proposed for dynamic (i.e. mobile) systems [Freundlich et al. 2017; Ke Zhou
and Roumeliotis 2011; Vander Hook et al. 2015]. Unlike the static (stationary) localization algorithms we have so far
discussed which assume all information is be available at once, the dynamic problem domain allows for the iterative
localization of mobile sensors/robots with new information appearing over time. One of the advantages of the dynamic
formulation is the ability to actively move robots/sensors to maximize information gain [Ke Zhou and Roumeliotis
2011].

Some statistical filtering methods may be sufficiently general to be applicable in the static case as well. However,
it is easy to see a statistical filtering algorithm for localization which attempts to minimize some notion of error at
each time step becomes a solution to a variant of Problem 2.1 (which minimizes error for a single set of measurement
data) if it only has one time step. Therefore in the static secure localization context of this paper, we consider the static
application of a statistical filtering algorithms to be a particular type of solution to 2.1, rather than a fundamentally
different kind of localization algorithm.

It is however worth mentioning that some statistical filtering algorithms such as Franco et al.’s [Di Franco et al.
2017], are tolerant to noise and outlier measurements, in ways both similar and different to a secure localization
algorithm. Franco et al.’s approach for non-line-of-sight errors is to model measurement noise as a random variable
with a Gaussian-mixture probability density function. As distance measurements are sampled over multiple time
steps, the algorithm jointly infers noise parameters along with the localization result using a generalization of the
classical technique of multidimensional scaling [Kruskal 1964]. While interesting, this algorithm is incomparable to
Gordian in two respects: First, Gordian uses geometry in the static context to detect inconsistencies rather than the
statistical patterns of measurements across multiple time steps. And second, Gordian assumes an adversarial rather
than Gaussian-mixture attack model, meaning the kinds of attacks Gordian can deal with don’t have to come from any
particular distribution. It may be interesting to consider combining the two approaches in the future, but we leave that
to future work.

3 LOCALIZATION ATTACK DETECTION

As described in Sec. 2.2, even in the absence of attacks there are certain graph properties that must be present in
the localization network for the localization problem to be well-posed. It should be no surprise then that stronger
properties are required for the attack detection problem to be well-posed in the presence of attacks. Although conditions
for the number of required non-malicious anchors are presented in [Zhong et al. 2008], and rigidity conditions for
outlier detection are addressed in [Yang et al. 2013a,b] this paper is the first of our knowledge to give conditions and a
systematic procedure for attack detection in the presence of adversarially coordinated sensor failures.
Manuscript submitted to ACM
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Fig. 2. An illustration of unique embeddings for a GGR localization network before attack (a) and after (b). The attack on edge (2,7),

represented by the dashed line, still yields a consistent embedding in (b). This localization network is susceptible to undetectable

attacks.

3.1 Threat Model

We consider two agents: a localization system that attempts to solve Problem 2.2 and an adversary that interferes by
corrupting some of the measurements seen by the localization system with the goal of causing the system to incorrectly
localize one or more sensors to the wrong locations. Thus, the adversary has potentially tampered with the localization
system’s ranging measurements2𝑚𝑖 𝑗 =𝑊 (𝑒𝑖 𝑗 ) ∗ (1+𝛿𝑖 𝑗 ) and anchor positions 𝑎𝑖 = 𝑝𝑎 (𝑖) +𝛼𝑖 . The 𝛿𝑖 𝑗 ∈ R and 𝛼𝑖 ∈ R2

values are controlled by the adversary.
For now we assume a noiseless scenario: if an edge measurement𝑚𝑖 𝑗 (or an anchor position 𝑎𝑖 ) is attack-free or

“clean”, then 𝑚𝑖 𝑗 = 𝑑𝑖 𝑗 (𝑎𝑖 = 𝑝∗ (𝑖)). Furthermore we assume from the system’s perspective there is no otherwise
distinguishing feature between clean and corrupted edges. We formalize an attack as an attack profile 𝜂 = (𝑏, 𝑐,𝑚, 𝑎)
where 𝑏 is the set of attacked edges, 𝑐 the set of attacked anchors,𝑚 the new weights on the attacked edges, and 𝑎 the
new locations of attacked anchors.

A localization network under attack profile 𝜂 is modified with these observed values in the expected way: the
graph 𝐺𝑑 is weighted by𝑚𝑖 𝑗 instead of 𝑑𝑖 𝑗 and anchor positions are given by 𝑝𝑎 (𝑖) = 𝑎𝑖 instead of 𝑝𝑎 (𝑖) = 𝑝∗ (𝑖). The
localization network 𝑁 under attack 𝜂 will be denoted 𝜂 (𝑁 ), where 𝜂 (·) is the application of an attack profile to a
localization network. For example, in Fig. 2, the localization network 𝑁 depicted in (a) has the correct distance between
nodes 2 and 7: ∥𝑝 (2) − 𝑝 (7)∥22 . But (b) depicts an embedding of the attacked localization result 𝜂 (𝑁 ), where attack
profile 𝜂 = ({(2, 7)}, ∅, {∥𝑝 (2) − 𝑝 (7′)∥22 }, ∅).

3.2 Problem Formulation

In this section we introduce formal notation for discussing attacks in a localization network. If the system can identify
the attack and remove all corrupted data from the localization network it observes, the system is free to solve Problem 2.2
using an ordinary, insecure, localization algorithm. We name this prior task the attack detection problem.

2Ranging measurements are corrupted multiplicatively (not additively) to avoid cross terms between distance and error when squaring𝑊 (𝑒𝑖 𝑗 )2 in the
noisy case (Section 5).
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8 Weber, M. et al

Given the graph (𝑆, 𝐸) of a localization network, we define an attack hypothesis 𝜂 = (𝑏, 𝑐) where 𝑏 ⊆ 𝐸, 𝑐 ⊆ 𝑆𝑎 .
Intuitively, this is a guess as to which anchors and edges are under attack. Clearly, for each true attack, an attack profile
𝜂 = (𝑏, 𝑐,𝑚, 𝑎) induces an attack hypothesis 𝜂 = (𝑏, 𝑐) by simply “remembering” the identities of attacked edges/anchors
and “forgetting” the values of the attack. A natural partial order is defined on attack hypotheses, where (𝑏, 𝑐) ⪯ (𝑏 ′, 𝑐 ′)
iff 𝑏 ⊆ 𝑏 ′ and 𝑐 ⊆ 𝑐 ′ (as set inclusion). We will say that 𝜂 (or 𝜂) is an (𝑠, 𝑡)-attack profile (hypothesis) if |𝑏 | ≤ 𝑠, |𝑐 | ≤ 𝑡 .
The space of all (𝑠, 𝑡)-attack profiles (hypotheses) for a localization network 𝑁 will be denoted 𝐻̂𝑁 (𝑠, 𝑡) (𝐻𝑁 (𝑠, 𝑡)), or,
if 𝑁 is clear from the context, just 𝐻̂ (𝑠, 𝑡) (𝐻 (𝑠, 𝑡)). If 𝜂 (𝑁 ) = 𝑁 , we say that 𝜂 is trivial with respect to 𝑁 . It is trivial
because the application of 𝜂 makes no difference to 𝑁 .

Given a localization network 𝑁 and an attack hypothesis 𝜂, we denote 𝑁 \ 𝜂 the localization network with the
hypthesized attacked edges and anchors removed. Since an attack profile 𝜂 induces an attack hypothesis 𝜂, we will
sometimes abuse notation and write 𝑁 \𝜂 for an attack profile 𝜂, which means we remove from 𝑁 the attack hypothesis
induced by 𝜂. We pose the attack detection problem for secure localization as follows.

Problem 3.1 (Noiseless Attack Detection). For a localization network 𝑁 and an attack profile 𝜂, given only 𝜂 (𝑁 ),
find a hypothesis 𝜁 ∈ 𝐻 (𝑠, 𝑡) such that 𝜂 ⪯ 𝜁 (where 𝜂 is the hypothesis induced by 𝜂).

The crux of successful attack detection is to make the attacks stand out in some way from the clean measurements of
the localization network. If corrupted edges and anchors make up only a small part of a localization network they can
be identified as the minimal part of the network that is incompatible with the rest. This forms the general idea behind
voting-based attack detection schemes, e.g., [Liu et al. 2008]. Drawing inspiration from Yang et al.’s rigidity-based outlier
detection technique [Yang et al. 2013a], we use the embeddability of a localization network, to define an (𝑠, 𝑡)-attack
tolerant (abbreviated as (𝑠, 𝑡)-AT) localization network that admits incompatibility-based attack identification for up to
𝑠 distance measurement attacks and 𝑡 anchor position attacks.

Unlike other secure localization algorithms, our approach seeks to provably identify all attacks in networks meeting
requirements we will lay out in theorem 3.6. As such, 𝑠 and 𝑡 are assumptions which must be made in advance regarding
the maximum number of attacks to search for in the network. To see why it is necessary to make such assumptions
about the network, consider how attack detection is impossible if 𝑠 and 𝑡 are the size of the network. Consistency-based
outlier detection would be impossible because an attack detection algorithm could simply return the entire network as
the attack, and nothing would actually be detected. Instead 𝑠 and 𝑡 are best interpreted as parameters representing
assumptions made by an attack detection algorithm. If 𝑠 and 𝑡 are too small, an attack detection algorithm may miss
attacks. Theorem 3.6 gives guidance on how large 𝑠 and 𝑡 may be in a given network for guaranteed attack detection
success.

Definition 3.2 (Sub-localization Network). A localization network 𝑁 ′ = (𝑆, 𝐸 ′,𝑊 ′, 𝑝 ′𝑎) is a sub-localization

network of 𝑁 = (𝑆, 𝐸,𝑊 , 𝑝𝑎) (denoted 𝑁 ′ ⊆ 𝑁 ) when 𝐸 ′ ⊆ 𝐸,𝑊 ′ =𝑊 ↾ 𝐸 ′, and 𝑝 ′𝑎 = 𝑝𝑎 ↾ 𝑆 ′𝑎 . If in addition, |𝐸 \ 𝐸 ′ | ≤ 𝑠

and |𝑆𝑎 \ 𝑆 ′𝑎 | ≤ 𝑡 , we write 𝑁 ′ ⊆𝑠,𝑡 𝑁 .

Given an attack profile (hypothesis) 𝜂 on 𝑁 , we define its restriction 𝜂 ↾𝑁 ′ by simply removing any attacks on edges
or anchors that are not in 𝑁 ′. By an abuse of notation, we will sometimes (as in definition 3.3) write 𝜂 (𝑁 ′) instead
of 𝜂 ↾𝑁 ′ (𝑁 ′). A sub-localization network 𝑁 ′ ⊆ 𝑁 also induces an attack hypothesis which we denote 𝜂𝑁 ′ , such that
𝑁 ′ = 𝑁 \ 𝜂𝑁 ′ . We now have the terminology to define a desirable property for a localization network which ensures
consistency-based attack detection methods, such as Gordian, will be successful:
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Fig. 3. Adding a redundant edge (3,7) to the example in Fig. 2 (b) satisfies Lemma 3.4. Neither the placement in (a) nor the placement

in (b) is an embedding: (a) is incompatible with edge (2,7) and (b) is incompatible with (3,7)

Definition 3.3 ((𝑠, 𝑡)-Attack Tolerance). A localization network 𝑁 is (𝑠, 𝑡)-attack tolerant when for every (𝑠, 𝑡)
attack profile 𝜂 ∈ 𝐻̂ (𝑠, 𝑡), for every (𝑠, 𝑡) attack hypothesis 𝜂 ∈ 𝐻 (𝑠, 𝑡), and for 𝑁 ′ = 𝑁 \ 𝜂 (in which case 𝑁 ′ ⊆(𝑠,𝑡 ) 𝑁 ),

the following condition is true: 𝜂 (𝑁 ′) is consistent→ 𝜂 is trivial with respect to 𝑁 ′, i.e. 𝜂 (𝑁 ′) = 𝑁 ′.

Note that if 𝜂 contains a non-trivial attack on an edge or anchor in 𝑁 which has been removed from 𝑁 ′ via 𝜂, the
attack on that edge or anchor is trivial with respect to 𝑁 ′. Intuitively, the definition says that if we guess an incorrect
(𝑠, 𝑡) attack hypothesis to remove from 𝑁 , but did not remove all of the non-trivial attacked edges and anchors, the
application of the real (non-trivial) attack 𝜂 to the resulting sub-localization network will necessarily leave it inconsistent.
Such a network possess enough redundancy in its edges and anchors that its clean information can “flag” the presence
of a non-trivial attack profile through inconsistency, even if an incorrect attack hypothesis has been removed from
the network. In other words, the only way to remove 𝑠 edges and 𝑡 anchors from the network to result in a consistent
network is to remove the actual attack. Therefore, attacks in an (𝑠, 𝑡)-AT localization network can be identified by
consistency checking. Clearly, GGR is an insufficient criterion, as shown in Fig. 2b where the attacked localization
network is still embeddable; attack tolerance requires something more.

3.3 Conditions for Attack Tolerance

We begin by first considering what it takes for a localization network to be 𝑠-AT in the absence of anchors (and anchor
attacks). In our analysis an 𝑠-redundantly generically globally rigid (abbreviated as 𝑠-GGR) network, is a localization
network that remains GGR after the removal of up to any 𝑠 edges from its graph. Such a network may be identified by
repeated use of Gortler et al.’s randomized algorithm [Gortler et al. 2010] on sub-localization networks.3 We start with
the following lemma about 𝑠-GGR localization networks, illustrated by Fig. 3:

Lemma 3.4. Let 𝑁 be a consistent 𝑠-GGR localization network and 𝜂 ∈ 𝐻̂ (𝑠, 0). 𝜂 (𝑁 ) is consistent if and only if 𝜂 is

trivial.

Proof. Clearly, if 𝜂 is trivial, 𝜂 (𝑁 ) = 𝑁 is consistent. On the other hand, suppose 𝜂 (𝑁 ) is consistent. 𝜂 (𝑁 ) \ 𝜂 is
also consistent (removing edges cannot make it any less consistent) and satisfies 𝜂 (𝑁 ) \ 𝜂 = 𝑁 \ 𝜂 once the attack has
3There are

( |𝐸 |
(𝑠 )

)
sub-networks to consider with 𝑠 edges removed. This can easily be done in parallel. If all are GGR, the original network is 𝑠-GGR.
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been removed. Observe, 𝑁 \ 𝜂 is GGR, since we removed no more than 𝑠 edges from 𝑁 . It therefore has exactly one
realization (up to isometry), which induces consistent edge weights on both 𝑁 and 𝜂 (𝑁 ). If some edge of 𝑁 or 𝜂 (𝑁 )
differed from the unique realization, that edge would be inconsistent. Therefore 𝑁 = 𝜂 (𝑁 ) and 𝜂 must be trivial. □

The first part of this proof relies upon the obvious fact that making no modification to a consistent 𝑁 , results in a
consistent 𝑁 . The second part of the proof uses the intuition that if we were to remove the attacked edges from 𝜂 (𝑁 ),
the resulting network would still be GGR and possess only a single, unique realization. This means the attacked edges
we removed must either disagree with the unique realization (and be inconsistent) or agree with the unique realization
(and be trivial).

Theorem 3.5. If 𝑁 is consistent and 2𝑠-GGR, then 𝑁 is (𝑠, 0)-AT.

Proof. In accordance with definition 3.3, let 𝜂 ∈ 𝐻̂ (𝑠, 0) and 𝜂 ∈ 𝐻 (𝑠, 0) respectively be a typical attack profile and
attack hypothesis on 𝑁 . Also, let 𝑁 ′ = 𝑁 \ 𝜂. As per the condition in definition 3.3, we must show a consistent 𝜂 (𝑁 ′)
implies a trivial 𝜂. So assume 𝜂 (𝑁 ′) is consistent. Observe 𝑁 ′ is consistent because removing edges from 𝑁 does not
affect consistency and that with 𝑠 fewer edges, 𝑁 ′ must be at least 𝑠-GGR. Therefore Lemma 3.4 applies to 𝑁 ′ and 𝜂,
showing 𝜂 is trivial under the assumption, which is the desired result. □

The proof of Theorem 3.5 is a direct application of Lemma 3.4 to the sub-localization network obtained by removing 𝑠
edges from 𝜂 (𝑁 ). This is why the “2𝑠-GGR” property appears: 𝜂 (𝑁 ) must remain 𝑠-GGR with 𝑠 fewer edges for Lemma
3.4 to be relevant. The above results do not consider anchor attacks, but more importantly, they do not rely on the
placement (or existence) of anchors at all, and are true up to isometry. We can therefore state the following.

Theorem 3.6. If 𝑁 is consistent, 2𝑠-GGR, and |𝑆𝑎 | ≥ 2𝑡 + 3, then N is (𝑠, 𝑡)-AT.

Proof. Analogously to Theorem 3.5, consider an attack profile 𝜂 ∈ 𝐻̂ (𝑠, 𝑡), attack hypothesis 𝜂 ∈ 𝐻 (𝑠, 𝑡), and
𝑁 ′ = 𝑁 \𝜂. As before, we assume 𝜂 (𝑁 ′) is consistent and seek to show 𝜂 is trivial with respect to 𝑁 ′. We will separately
demonstrate the triviality of edge attacks in 𝜂 and anchor attacks in 𝜂. We refer to the edge attacks in 𝜂 as 𝜂𝑠 and the
anchor attacks in 𝜂 as 𝜂𝑡 .

First consider edge attacks. Lemma 3.4 applies as in Theorem 3.5 to show 𝜂𝑠 ∈ 𝐻̂ (𝑠, 0) is trivial. Even without
considering the anchor information in 𝑁 , a non-trivial edge attack in 𝜂𝑠 violates our assumption of edge consistency
for 𝜂 (𝑁 ′).

Next consider anchor attacks. We have already established 𝑁 ′ is consistent and has exactly one realization up to
isometry (it is 𝑠-GGR, and in particular, GGR). As such it would take 3 consistent anchors to uniquely localize 𝑁 ′. 𝑁 has
at least 2𝑡 + 3 anchors and 𝑁 ′ with 𝑁 ′ ⊆(𝑠,𝑡 ) 𝑁 has at least 𝑡 + 3 anchors. As 𝜂 contains no more than 𝑡 anchor attacks,
𝜂𝑡 (𝑁 ′) must have at least 3 unattacked anchors. These 3 anchors establish a unique consistent embedding for 𝜂𝑡 (𝑁 ′).
Therefore a non-trivial anchor attack in 𝜂𝑡 , violates the consistency assumption for 𝜂 (𝑁 ′). Since 𝜂𝑠 and 𝜂𝑡 have been
shown to be trivial, the full 𝜂 must be trivial as well. □

The proof of Theorem 3.6 uses the “2𝑠-GGR” condition of Theorem 3.5 to ensure trivial edge attacks and introduces a
new anchor condition to ensure 𝑁 always has enough unattacked anchors left to uniquely localize the network after 𝜂
and 𝜂. Similar to edge attacks in Lemma 3.4, anchor attacks in a uniquely localizable network must either be trivial or
inconsistent with the network’s unique embedding.

Theorem 3.6 gives sufficient conditions for attack tolerance. These conditions may be used as a guide for sensor
network engineers to determine when a consistency-based attack detection algorithm like Gordian is guaranteed to be
Manuscript submitted to ACM
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successful.4 A full characterization of the necessary and sufficient conditions for (𝑠, 𝑡)-AT attack detection are beyond
the scope of this paper. The challenge of this characterization lies in evaluating the attack tolerance of a localization
network that is not sufficiently redundantly GGR, but makes up the difference with anchor information. For an extreme
example consider a sparsely connected localization network with no anchor attacks where every node is an anchor.
Edge attacks are detectable but not by rigidity.

Algorithm 1 Attack Detection

1: procedure AttackDetection (localization network 𝜂 (𝑁 ), 𝑠, 𝑡)
2: for 𝑒𝑖 𝑗 ∈ 𝐸 and 𝑎𝑘 ∈ 𝑆𝑎 do
3: Declare pseudoboolean indicator variables 𝑏𝑖 𝑗 and 𝑐𝑘 // 1 represents corrupted, 0 represents clean
4: end for
5: 𝐶 ← (∑(𝑖, 𝑗) ∈𝐸 𝑏𝑖 𝑗 ≤ 𝑠) ∧ (∑𝑘∈𝑆𝑎 𝑐𝑘 ≤ 𝑡) // 𝐶 is a set of pseudoboolean SAT clauses
6: while Satisfiable( 𝐶) do
7: AttackHypothesis 𝜁 ← GetSatisfyingAssignment(C)
8: (TestResult, EdgeResidues) ← EmbeddabilityTest(𝜂 (𝑁 ) \ 𝜁 )
9: if TestResult = IsEmbeddable then
10: return 𝜁 // 𝜂 ⪯ 𝜁

11: else
12: NewC← GenCounterexamples (𝜂 (𝑁 ) \ 𝜁 , EdgeResidues)
13: 𝐶 ← 𝐶 ∪ NewC ∪ (∨(𝑖, 𝑗) ∈𝜁 𝑏𝑖 𝑗 ∨∨𝑘∈𝜁 𝑐𝑘 ) // C on next iteration includes counterexamples and 𝜁
14: end if
15: end while
16: return Failure

4 THE GORDIAN ALGORITHM

Gordian is an algorithm designed to efficiently perform attack detection on finite localization networks, guaranteed to
succeed on (𝑠, 𝑡)-AT localization networks. Gordian’s design is inspired by the design of Imhotep [Shoukry et al. 2015],
Shoukry et al.’s lazy SMT solver for secure state estimation in the presence of attacks. Like Imhotep, Gordian identifies
a combinatorial attack identification sub-problem that can be isolated from an otherwise convex optimization problem.

4.1 High Level Design

We present Gordian’s high level process for solving the attack detection Problem 3.1 in Algorithm 1. Gordian’s main
steps are also graphically depicted in Fig. 4, and summarized here.

Given (𝑠, 𝑡)-AT localization network 𝑁 , Gordian first assigns a boolean variable to represent the corrupt/clean
status for each of 𝑁 ’s distance measurements and anchor positions. Next, Gordian assembles clauses made up of these
variables to form a boolean satisfiability (SAT) problem5, in such a way that a satisfying assignment to the variables
represents a plausible attack hypothesis. Gordian solves the SAT problem and tests the attack hypothesis 𝜁 obtained
as the SAT solution. This is accomplished by testing the consistency of 𝑁 ′ = 𝑁 \ 𝜁 , a network with the hypothesized
attacked edges removed. If 𝑁 ′ is consistent, by Definition 3.3 all remaining attacks are trivial and 𝜁 may be returned
as the Problem 3.1 solution. If 𝑁 ′ is not embeddable, Gordian attempts to find small 𝑁 ′′ ⊆ 𝑁 ′ that are also not
embeddable. Algorithm 2 attempts to find these 𝑁 ′′ and uses them to construct new SAT counterexample clauses which
4Refer to Theorem .1 in the appendix for a proof of Gordian’s soundness and completeness given an (𝑠 ,𝑡 )-AT localization network.
5Technically the constraints on line 4 of Algorithm 1 make this a pseudo-Boolean satisfiability problem, that is translatable into a boolean SAT problem.
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Fig. 4. An illustration of the steps and overall flow of Algorithm 1

direct future iterations of Gordian to test attack hypotheses containing edges and anchors from 𝑁 ′′. By Theorem .1
in the Appendix, assuming a well-posed input, Gordian will always terminate in the “Success” zone of Fig. 4 with a
Problem 3.1 solution.

We walk through an iteration of Gordian’s main loop on the long-running example6 in Fig. 3. Gordian first assigns
boolean variables to the anchors 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6 and the edges 𝑒 (1,2) , 𝑒 (1,3) , ... 𝑒 (4,7) . In our convention, the literal 𝑥
refers to the positive occurance of variable 𝑥 and 𝑥 ′ as its negation. The clauses, 𝐶 are initialized with 𝑒 (1,2) + 𝑒 (1,3)+ ...
𝑒 (4,7) ≤ 𝑠 = 1 and 𝑎1 + 𝑎2 + 𝑎3 + 𝑎4 + 𝑎5 + 𝑎6 ≤ 𝑡 = 0 to encode the assumption there are no more than 𝑠 corrupted edges
and no more than 𝑡 corrupted anchors. The SAT solver immediately finds a satisfying assignment by setting every
variable to false, signifying an empty attack hypothesis 𝜁 . No edges or anchors are removed from 𝜂 (𝑁 ) on this iteration.
An embeddability test is performed, and due to the inconsistency on edges connected to node 7, it fails. Gordian goes
to the Trilateration Counterexamples (GenCounterexamples) step starting with a randomly selected high residue
edge,7 which happens to be (1,2). Gordian randomly selects edges (1,6) and (2,6) to complete the initial triangle. The
induced sublocalization network for nodes 1, 2, and 6 is embeddable, so Gordian randomly selects node 7 to extend the
counterexample. The induced sublocalization network for nodes 1, 2, 6, and 7 is still embeddable so Gordian tries again
by randomly selecting node 3. Finally, the induced sublocalization network for nodes 1, 2, 3, 6 and 7 is not embeddable,
so Gordian learns the clause (𝑎1 ∨ 𝑎2 ∨ 𝑎3 ∨ 𝑎6 ∨ 𝑒 (1,2) ∨ 𝑒 (1,3) ∨ 𝑒 (1,6) ∨ 𝑒 (1,7) ∨ 𝑒 (2,3) ∨ 𝑒 (2,6) ∨ 𝑒 (2,7) ∨ 𝑒 (3,6) ∨ 𝑒 (3,7) ),
which contains every edge measurement and anchor position in the counterexample. On the next iteration of SAT

6The example in Fig. 3 is just 1-GGR and not technically a well-formed input for 𝑠 = 1. Gordian can still run on such a localization network, just without
the guarantee of correctness from Theorem 3.6.
7An edge residue is defined in Problem 4.2. It can be interpreted as a measure of the difference between the nominal edge distance from𝑊 (𝑒𝑖 𝑗 ) and the
edge distance obtained in the embedding.
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solving, the new clause will lead to an attack hypothesis that sets at least one of those variables to true, shrinking the
search space for the true attack.

4.2 Attack Hypothesis Generation

Assume we begin with a finite (𝑠, 𝑡)-AT localization network 𝑁 that is corrupted by 𝜂 ∈ 𝐻̂ (𝑠, 𝑡) (denoted 𝜂 (𝑁 )) as input.
To model an attack hypothesis 𝜁 on 𝜂 (𝑁 ), Gordian assigns pseudo-boolean indicator variables 𝑏𝑖 𝑗 and 𝑐𝑘 to the edges
and anchors of its input. The attack hypothesis is a tuple of the edges and anchors for which the pseudo-boolean variables
were set to 1. More formally 𝜁 = ({𝑒𝑖 𝑗 : 𝑏𝑖 𝑗 = 1}, {𝑎𝑘 : 𝑐𝑘 = 1}). This model allows attack hypotheses to be generated
by a pseudo-boolean satisfiability (SAT) solver; initially only given the constraint there are fewer than 𝑠 and 𝑡 attacks,
but over time accumulating counterexample clauses learned from EmbeddabilityTest and GenCounterexamples.

4.3 Embeddability Test

We will show in this section how to frame the embeddability (and localization) problem as a convex program, relying
on a key result in the literature [So and Ye 2007]: Uniquely Localizable (UL) localization networks with no attacks
can always be localized in the plane using the (BY-SDP) technique [Biswas et al. 2006] presented below. We take the
contrapositive of this result to identify inconsistent localization networks.

Let the unknown 𝑝 (𝑖) for 𝑖 ∈ 𝑆𝑥 be decision variables and define 𝑋 = [𝑝 (1), 𝑝 (2), ..., 𝑝 ( |𝑆𝑥 |)] ∈ R2×|𝑆𝑥 | as the matrix
of decision variables obtained by stacking the first and second coordinates of the 𝑝 (𝑖). Also, let 𝜈𝑖 ∈ {0, 1}𝑛 be a unit
column vector whose 𝑖th component is 1 and all other components 0, and 𝑎 𝑗 ∈ R2 be the position of anchor node 𝑗 .

We define 𝑔𝑖 𝑗 =
[
𝜈𝑖 − 𝜈 𝑗 0

]⊤
if both 𝑠𝑖 and 𝑠 𝑗 are sensors, and 𝑔𝑖 𝑗 =

[
𝜈𝑖 −𝑎 𝑗

]⊤
if either of 𝑠𝑖 and 𝑠 𝑗 is an anchor.

Now, the squares of sensor-sensor distances and sensor-anchor distances can be uniformly represented as

∥𝑝 (𝑖) − 𝑝 ( 𝑗)∥2 =
�����𝑔⊤𝑖 𝑗

[
X⊤X X⊤

X I2

]
𝑔𝑖 𝑗

����� (4.1)

where I2 is a 2 × 2 identity matrix. With this representation for the aggregate ∥𝑝 (𝑖) − 𝑝 ( 𝑗)∥2, we can set up an
optimization problem of the form in (2.1). It is worthy to note that, the sensor set and the anchor set vary with the attack
hypothesis. A hypothetically attacked anchor will be treated as a sensor with unknown location in the optimization
problem.

minimize
X,Y

∑
(𝑖, 𝑗) ∈𝐸

�����𝑔⊤𝑖 𝑗
[
Y X⊤

X I2

]
𝑔𝑖 𝑗 −𝑊 (𝑒𝑖 𝑗 )2

�����
𝑊 (𝑒𝑖 𝑗 )2︸                                 ︷︷                                 ︸
𝑟𝑒𝑠𝑖𝑑𝑢𝑒 (𝑖,𝑗 )

(4.2)

subject to Y = X⊤X.

We observe that the objective in Problem 4.2 is a summation over the residues on each edge (𝑖, 𝑗) which will attain a
minimum of zero, i.e. all residues are zeros, if there exists an embedding. However, Problem 4.2 is not convex, because
the constraint Y = X⊤X restricts the rank of Y to be 2.

Biswas and Ye’s solution [Biswas et al. 2006] to this dilemma is to lift the feasible set to a higher dimension by
relaxing the constraint to Y ⪰ X⊤X [Biswas and Ye 2004]. This yields the following SDP8 solvable in a polynomial
8The normalizing factor𝑊 (𝑒𝑖 𝑗 )2 in the denominator is not explicitly given by Biswas and Ye, but it is implicitly equivalent to the arbitrary multiplicative
weights in [Biswas et al. 2006].
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number of iterations by interior point methods [Alizadeh 1995]. We refer to this relaxation as the BY-SDP.

minimize
X,Y

∑
(𝑖, 𝑗) ∈𝐸𝑥

|𝑔⊤
𝑖 𝑗
Z𝑔𝑖 𝑗 −𝑊 (𝑒𝑖 𝑗 )2 |
𝑊 (𝑒𝑖 𝑗 )2

(4.3)

subject to Z �

[
Y X⊤

X I2

]
⪰ 0.

Conceptually, this relaxation allows the solver to localize each sensor in a higher-dimension space R |𝑆𝑥 | instead of
in R2 [Biswas et al. 2006]. If the residues are all zero and Y has rank 2, up to some numerical errors, we can certify that
the localization network is embeddable in R2. If localization is desired, the component of Z corresponding to X can be
read off as the projection of the high dimensional solution back down to the plane of the anchors.

4.4 Trilateration Counterexamples

Like many verification algorithms, the worst case time complexity of Gordian is huge in theory but much faster in
practice. Without an efficient way to reduce the search space of attack hypotheses, Algorithm 1 reduces to a brute force
search over all

( |𝐸 |
(𝑠)

)
·
( |𝑆𝑎 |
(𝑡 )

)
candidates for 𝜁 . Furthermore, each iteration testing an attack hypothesis requires solving

a boolean satisfiability problem (the canonical NP problem) and solving an SDP, which in the worst case cannot be
solved in polynomial time because it may require an exponential number of bits to express its solution [Alizadeh 1995].
Solvers for SAT and SDP problems are popular because they make these theoretically intractable problems usually
tractable in practice. Therefore in our complexity analysis we treat SAT and SDP solvers as constant time oracles for
their respective problems.

Theorem 4.1. Algorithm 1’s worst case time complexity is 𝑂 ( |𝐸 |𝑠 · |𝑆𝑎 |𝑡 ), assuming oracles for SAT and SDP.

Proof. Setting up Algorithm 1 (lines 2-4) is linear in |𝐸 | + |𝑆𝑎 |. The main loop (lines 5-12) executes at most
( |𝐸 |
(𝑠)

)
·
( |𝑆𝑎 |
(𝑡 )

)
times, contributing the |𝐸 |𝑠 · |𝑆𝑎 |𝑡 term. Each iteration of the loop solves a boolean satisfiability problem (line 6) and
an embeddability test SDP (line 7) which are solved by 𝑂 (1) oracles. The only other potentially expensive step is
𝐺𝑒𝑛𝐶𝑜𝑢𝑛𝑡𝑒𝑟𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 (line 11) which in Algorithm 2 performs a constant number of iterations of operations polynomial
on |𝐸 | + |𝑆𝑎 |, and invokes the SDP oracle. □

In our experiments, the boolean satisfiability problems posed on Algorithm 1 line 6 are easy to solve and make up a
trivial amount of Gordian’s execution time. While the SDP embeddability tests (Algorithm 1 line 7 and Algorithm 2
line 9) make up a large portion of Gordian’s execution time, that time is more in line with interior point method’s
polynomially bounded number of iterations rather than the pathological examples which produce an exponential worst
case.

The remaining high complexity task which solvers cannot address is the brute force search over all
( |𝐸 |
(𝑠)

)
·
( |𝑆𝑎 |
(𝑡 )

)
candidates for 𝜁 . Fortunately, when Algorithm 1 finds 𝜂 (𝑁 ) \ 𝜁 unembeddable, often only a small 𝜂 (𝑁 ′) ⊂ 𝜂 (𝑁 ) \ 𝜁
causes unembeddability. If Algorithm 2 can find an 𝜂 (𝑁 ′), Algorithm 1 can reduce its search space dramatically by
learning a counterexample clause constructed by taking the “or” of the boolean variables for nodes and edges in 𝜂 (𝑁 ′).
With the new clause, all attack hypotheses on future iterations must offer an explanation of why 𝑁 ′ was unembeddable,
focusing the search.

Our heuristic approach, presented in Algorithm 2, for finding small 𝜂 (𝑁 ′) is motivated by the observation that
high residue values from localization tend to occur in the vicinity of the attacks in the graph. As clean trilateration
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localization networks are GGR, Eren et al.’s iterative trilateration method [Eren et al. 2004] is the basis for Algorithm 2.
Starting with three nodes, Algorithm 2 extends a candidate 𝜂 (𝑁 ′) one node at a time until 𝜂 (𝑁 ′) is determined to be
unembeddable9 or a maximum subgraph size (8 nodes in our implementation) is reached. We memorize calls to the
EmbeddabilityTest procedure to save runtime.

ImportanceSamplingByResidue produces a starting point for a trilateration subgraph by weighting every edge in
the graph by its residue, normalizing weights into a probability distribution summing to 1, and then sampling an edge
from that distribution. ImportanceSamplingByConnectingResidues is a similar algorithm that samples nodes with at
least three connections to the current trilateration subgraph. The weight assigned to a node is equal to the sum of edge
residues on edges connecting it to the trilateration subgraph.

Algorithm 2 Trilateration Counterexamples

1: procedure GenCounterexamples (localization network 𝑁 , EdgeResidues)
2: Parameters: NumberOfIterations and MaxSubgraphSize
3: 𝐶 ← ∅ // 𝐶 is the set of counterexamples
4: for 1 : NumberOfIterations do
5: (𝑖, 𝑗) ← ImportanceSamplingByResidue(EdgeResidues)
6: ThirdNodeCandidates← {𝑘 : 𝑘 ∈ 𝑆 & (𝑖, 𝑘), ( 𝑗, 𝑘) ∈ 𝐸}
7: 𝑘 ← ImportanceSamplingByConnectingResidues(ThirdNodeCandidates, EdgeResidues)
8: 𝑁 ′ ← NewSubLocalizationNetworkInducedBy𝑁 ({𝑖, 𝑗, 𝑘})
9: while |𝑆 ′ | < MaxSubgraphSize do
10: if EmbeddabilityTest(𝑁 ′) = NotEmbeddable then
11: 𝐶 ← 𝐶 ∪ (∨(𝑖, 𝑗) ∈𝐸′ 𝑏𝑖 𝑗 ∨∨𝑘∈𝑆′𝑎 𝑐𝑘 ) // At least one edge or anchor in 𝑁 ′ is corrupted
12: break
13: end if
14: NextNodeCandidates← {𝑛 : 𝑛 ∈ 𝑆, ∃ 𝑖, 𝑗, 𝑘 ∈ 𝑆 ′ s.t. (𝑖, 𝑛), ( 𝑗, 𝑛), (𝑘, 𝑛) ∈ 𝐸}
15: n← ImportanceSamplingByConnectingResidues(NextNodeCandidates, EdgeResidues)
16: 𝑁 ′ ← NewSubLocalizationNetworkInducedBy𝑁 (𝑆 ′ ∪ 𝑛)
17: end while
18: end for
19: return 𝐶

5 NOISY GORDIAN

Real world sensors are imperfect, introducing small errors into their measurements which shouldn’t qualify as attacks.
We now consider the Noisy Localization and Noisy Attack Detection problems where small errors are expected on
uncorrupted values. With an extension of Gordian’s embeddability test (section 4.3) to this noisy case, we show how
Noisy Gordian can be used to identify violations of sensor noise assumptions by swapping the noiseless embeddability
test (Algorithm 1 line 7 and Algorithm 2 line 9), with the approximate embeddability test described in section 5.2.

5.1 Noisy Localization Networks

To review our previous terminology, for localization network 𝑁 = (𝑆, 𝐸,𝑊 , 𝑝𝑎), the Exact Localization Problem 2.2
presupposes the weights𝑊 (𝑒𝑖 𝑗 ) = 𝑑𝑖 𝑗 and anchor positions 𝑝𝑎 = 𝑝∗ ↾𝑆𝑎 . An Attack Profile 𝜂 = (𝑏, 𝑐,𝑚, 𝑎) substitutes
𝑚𝑖 𝑗 = 𝑑𝑖 𝑗 ∗ (1 + 𝛿𝑖 𝑗 ) in place of weight𝑊 (𝑒𝑖 𝑗 ) for 𝑒𝑖 𝑗 ∈ 𝑏 and anchor positions 𝑎𝑖 = 𝑝∗ (𝑖) + 𝛼𝑖 for 𝑝𝑎 ∈ 𝑐 .

9Non-zero BY-SDP residues are sufficient for showing unembeddability.
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We now introduce Noise Profiles 𝜈 = (𝑏, 𝑐,𝑚, 𝑎) as a specialized form of Attack Profile, where 𝛿𝑖 𝑗 and 𝛼𝑖 are not
arbitrarily determined by an adversary, but instead drawn from zero-mean probability distributions as 𝛿𝑖 𝑗 ∼ Θ𝑖 𝑗 and
𝛼𝑖 ∼ Φ𝑖 with the symbol ∼ standing for the “is distributed according to” relation. A noise profile may be applied to a
noiseless localization network 𝑁 as 𝜈 (𝑁 ) and may be composed with an (adversarial) attack profile 𝜂 to represent a
both corrupted and noisy localization network as 𝜂 (𝜈 (𝑁 )).

Since our noise assumptions give anchor positions the possibility of error (like in GNSS sensors), we give the
“softened” anchor constraints version of Equation 2.1. The new constant 𝜆 weights the relative significance of distance
measurements against anchor positions in the objective. Coefficients weighting relative significance of observations
in SDP localization problems date back to its formulation by Biswas and Ye [Biswas et al. 2006]. In our experimental
analysis we, somewhat arbitrarily, use 𝜆 = 5 but this value could certainly be different in applications with less or more
reliable anchors.

minimize
𝑝 (𝑖),𝑖∈𝑆

∑
(𝑖, 𝑗) ∈𝐸

��∥(𝑝 (𝑖) − 𝑝 ( 𝑗)∥22 −𝑊 (𝑒𝑖 𝑗 )2��
𝑊 (𝑒𝑖 𝑗 )2

+ 𝜆
∑
𝑘∈𝑆𝑎

∥(𝑝 (𝑘) − 𝑝𝑎 (𝑘)∥22 . (5.1)

Observe the change from 𝑆𝑥 and 𝐸𝑥 in Equation 2.1 to 𝑆 and 𝐸 in the first summation of Equation 5.1. 𝑆 changes
because anchor positions are now decision variables. 𝐸 changes because inter-anchor measurements are useful when
anchors can “float”. When anchor positions were hard constraints, the inter-anchor distance measurements taken by
sensors were irrelevant and hence excluded via 𝐸𝑥 .

5.2 Approximate Embeddings

We cannot simply extend Problem 2.2 to the noisy case by treating 𝜈 (𝑁 ) as input in place of 𝑁 , because even attack-free
noisy localization networks are almost never consistent. As Anderson et al. observe, solving Problem 2.2 for a noisy
GGR localization network is equivalent to finding the solution to an over-determined system of polynomial equations
(the distance constraints), and such solutions do not in general exist [Anderson et al. 2010]. Therefore we define noisy
localization as the solution to the optimization problem in Equation 2.1.

Problem 5.1 (Noisy Localization). Given 𝜈 (𝑁 ), where 𝜈 is a noise profile and 𝑁 is a localization network, find the

solution to (2.1).

Framing noisy localization directly as an optimization problem is common in the literature (e.g. [Biswas and Ye 2004;
Savvides et al. 2001; Wang et al. 2008]). In this paper as we consider anchor noise, we instead use Equation 5.1 and
solve the similar Problem 5.2.

Problem 5.2 (Noisy Localization with Soft Anchors). Given 𝜈 (𝑁 ), where 𝜈 is a noise profile and 𝑁 is a localization

network, find the solution to (5.1).

Problems 5.2 and 5.1 are not given in terms of finding 𝑝∗; however Anderson et al. show (a statement similar to)
Problem 5.1 has useful properties such as a unique minimum for a uniquely localizable 𝑁 when noise is sufficiently
small [Anderson et al. 2010]. Therefore a solution to Problems 5.2 and 5.1 can be thought of as an approximate solution
to Problem 2.2.

We seek to generalize the notion of a noiseless embedding to an approximate embedding in an analogous way by
examining residues. As a noiseless embedding has zero residues, an approximate embedding should have low residues.
But how low?
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Consider 𝑁 = (𝑆, 𝐸,𝑊 , 𝑝𝑎) and a ground truth placement 𝑝∗ s.t.𝑊 (𝑒𝑖 𝑗 ) = 𝑑𝑖 𝑗 and 𝑝𝑎 = 𝑝∗ ↾𝑆𝑎 . In the remainder
of this section we explain how to set residue thresholds for approximate embeddability in such a way that 𝑝∗ is an
approximate embedding of 𝜈 (𝑁 ) at high confidence in the absence of an attack. If some 𝑁 ′ were not approximately
embeddable in this way, with high confidence 𝑁 ′ ≠ 𝜈 (𝑁 ), implying 𝑁 ′ contains an attack.

We have already defined an edge 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 (𝑖, 𝑗) from Equation 4.2. Now with noise on anchors we may also define an
anchor 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑖 as ∥(𝑝 (𝑘) − 𝑝𝑎 (𝑘)∥22 . Note for both edges and anchors, residues are defined with respect to a particular
placement 𝑝 .

Definition 5.3 (𝛾-𝛽-Embedding). A placement 𝑝 is a 𝛾-𝛽-Embedding with respect to localization network 𝑁 if

(1)
∑
(𝑖, 𝑗) ∈𝐸 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 (𝑖, 𝑗) ≤ 𝛾𝑒 .

(2)
∑
𝑘∈𝑆𝑎 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑘 ≤ 𝛾𝑎 .

(3) ∀(𝑖, 𝑗) ∈ 𝐸 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 (𝑖, 𝑗) ≤ 𝛽𝑖 𝑗 .

(4) ∀𝑘 ∈ 𝑆𝑎 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑘 ≤ 𝛽𝑘 .

Conditions (1) and (2) appear in the the objective function for noiseless embeddability testing with soft anchor
constraints in Equation 5.1. The 𝛽 parameter used for conditions (3) and (4) captures the idea that bounded noise
distributionsΘ and Φ should yield bounded residues. The choice of particular conditions for Definition 5.3 was motivated
by the following observations about the residues at 𝑝∗:

Since 𝑑2
𝑖 𝑗

= ∥(𝑝∗ (𝑖) − 𝑝∗ ( 𝑗)∥22 , and 𝑑
2
𝑖 𝑗
appears in every term of noisy𝑊 (𝑒𝑖 𝑗 ), it can be factored out, which yields

𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑖 𝑗 =

���𝑑2𝑖 𝑗 −𝑚2
𝑖 𝑗

���
𝑚2
𝑖 𝑗

=

���𝑑2𝑖 𝑗 − (𝑑2𝑖 𝑗 (1 + 𝛿𝑖 𝑗 )2)���
𝑑2
𝑖 𝑗
(1 + 𝛿𝑖 𝑗 )2

=

��1 − (1 + 𝛿𝑖 𝑗 )2)��
(1 + 𝛿𝑖 𝑗 )2

(5.2)

The same is true for 𝑝∗ (𝑖) in

𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑘 = ∥𝑝∗ (𝑘) − (𝑝∗ (𝑘) + 𝛼𝑘 )∥22 = ∥𝛼𝑘 ∥22 . (5.3)

These factored residue expressions contain no instances of 𝑑𝑖 𝑗 nor 𝑝∗, yet represent the value of residues when
𝑝 = 𝑝∗. Therefore, it is not necessary to know 𝑝∗ to calculate the residues at 𝑝∗. Noisy 𝑝∗ residues may be determined
directly from Θ and Φ.

These observations enable the selection of 𝛾 and 𝛽 values 𝐺 and 𝐵 such that 𝑝∗ is 𝐺-𝐵-embeddable at high con-
fidence. Monte Carlo simulation is a simple and effective method for settling on 𝐺 and 𝐵 values appropriate for Θ
and Φ. The algorithm is straightforward: for a sufficiently large number of trials, sample 𝛿 and 𝛼 values and compute∑
(𝑖, 𝑗) ∈𝐸 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 (𝑖, 𝑗) and

∑
𝑘∈𝑆𝑎 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑘 . Looking at the histogram of residue sums across the trials, pick a high per-

centile (e.g. the 99.9th percentile) and use the corresponding values for 𝐺𝑒 and 𝐺𝑎 . The same algorithm works for 𝐵𝑒
and 𝐵𝑎 , and as we show in Section 6 is applicable to arbitrary Θ and Φ such as data sets from real-world sensors.

5.3 Approximate Embeddability Test

We next show how an SDP formulation for noisy localization may be adapted to 𝐺-𝐵-embeddability testing via a
constraint satisfaction problem (CSP) with a semidefinite relaxation.

The BY-SDP procedure (4.3) was originally intended as a solution to Problem 5.1 for noisy localization networks and
is empirically effective with noisy measurements [Biswas and Ye 2004]. We give the soft-anchor variant of the method
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for Problem 5.2 in Equation 5.4. This alternative formulation can be intuitively understood as treating anchor nodes
as unlocalized nodes with an anchor residue term in the objective penalizing the anchor’s distance from its nominal
position. Formally, a modification must be made to matrix X by including anchor nodes as decision variables. Here
X = [𝑝 (1), 𝑝 (2), ..., 𝑝 ( |𝑆 |)] ∈ R2×|𝑆 | . Let 𝑔𝑖 𝑗 =

[
𝜈𝑖 − 𝜈 𝑗 0

]⊤
for all 𝑠𝑖 and 𝑠 𝑗 . Separate the other case of 𝑔 from before

to 𝑓𝑖 =

[
𝜈𝑖 −𝑎 𝑗

]⊤
for 𝑠𝑘 ∈ 𝑆𝑎 . The definitions of Y and Z are as before, but with respect to the new X.

minimize
Z⪰0

∑
(𝑖, 𝑗) ∈𝐸

|𝑔⊤
𝑖 𝑗
Z𝑔𝑖 𝑗 −𝑊 (𝑒𝑖 𝑗 )2 |
𝑊 (𝑒𝑖 𝑗 )2

+ 𝜆
∑
𝑘∈𝑆𝑎

𝑓 ⊤
𝑘
Z𝑓𝑘 (5.4)

The first summation expresses inter-node residues changed to sum over 𝐸 in place of 𝐸𝑥 because inter-anchor
measurements provide information when anchor positions are not hard constraints. The second summation expresses
anchor residues (∥(𝑝 (𝑖) − 𝑝𝑎 (𝑖)∥22 ). As before, the semidefinite relaxation of Z changes this from an nonconvex rank-
constrained problem to an SDP problem. To obtain the location estimate, read X∗ off the minimizer Z∗.

The important thing about Equation 5.4 from an approximate embeddability testing perspective is that it contains
expressions for each edge and anchor residue. This is everything we need to test the 𝐺-𝐵-embeddability of network 𝑁 :

∑
(𝑖, 𝑗) ∈𝐸

���𝑔⊤𝑖 𝑗Z𝑔𝑖 𝑗 −𝑊 (𝑒𝑖 𝑗 )2���
𝑊 (𝑒𝑖 𝑗 )2

≤ 𝐺𝑒 (5.5a)∑
𝑘∈𝑆𝑎

𝑓 ⊤
𝑘
Z𝑓𝑘 ≤ 𝐺𝑎 (5.5b)���𝑔⊤𝑖 𝑗Z𝑔𝑖 𝑗 −𝑊 (𝑒𝑖 𝑗 )2���

𝑊 (𝑒𝑖 𝑗 )2
≤ 𝐵𝑖 𝑗 ,∀(𝑖, 𝑗) ∈ 𝐸 (5.5c)

𝑓 ⊤
𝑘
Z𝑓𝑘 ≤ 𝐵𝑘 ,∀𝑘 ∈ 𝑆𝑎, (5.5d)

If the above constraints are not feasible with respect to any Z ⪰ 0, we can then conclude that the given 𝑁 is not
𝐺-𝐵-embeddable; however, if the constraints are feasible, we cannot be sure whether 𝑁 is truly 𝐺-𝐵-embeddable in 2
dimensions or simply appears as such due to the relaxation of the rank constraint on 𝑍 .

5.4 Noisy Attack Detection

Noisy attack detection generalizes from the noiseless case.

Problem 5.4 (Noisy Attack Detection). For a localization network 𝑁 , noise profile 𝜈, and attack profile 𝜂, given only

𝜂 (𝜈 (𝑁 )), find a hypothesis 𝜁 ∈ 𝐻 (𝑠, 𝑡) such that 𝜂 (𝜈 (𝑁 )) \ 𝜁 is G-B-embeddable.

We implemented Noisy Gordian by replacing the embeddability test in section 4.3 with Monte Carlo calculation of
𝐺 and 𝐵 and the CSP10 in Equation 5.5. As such, the algorithm for Noisy Gordian is Algorithm 1 only with a noisy
embeddability test at Algorithm 1 line 7 and Algorithm 2 line 9. Noisy Gordian solves Problem 5.4 up to the SDP
relaxation of its embeddability test. By the selection of parameters 𝐺 and 𝐵, such a hypothesis exists (when 𝜁 = 𝜂) with
high confidence for 𝜂 (𝜈 (𝑁 )) \ 𝜁 , and lines 7 and 8 of Algorithm 1 ensure Noisy Gordian will not terminate until it

10(5.5) is a constraint satisfaction problem, and does not produce meaningful residues as expected by Line 7 of Algorithm 1 in equation 5.5. As a
workaround we generate residues by first solving a noisy localization problem (5.4) whenever residues are required.
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has found one. We classify non-trivial attacks (larger in magnitude than plausible noise from 𝜈) into two categories:
𝐺-𝐵-effective and 𝐺-𝐵-compatible.

• 𝐺-𝐵-Effective Attacks: 𝜂, yielding 𝐺-𝐵-unembeddable 𝜂 (𝜈 (𝑁 )).
• 𝐺-𝐵-Compatible Attacks: non-trivial 𝜂, yielding 𝐺-𝐵-embeddable 𝜂 (𝜈 (𝑁 )).

When Noisy Gordian solves Problem 5.4 it identifies𝐺-𝐵-effective attacks. Any unidentified𝐺-𝐵-compatible attacks
are limited in size by the uncorrupted part of the localization network: If 𝑝 is a 𝐺-𝐵-embedding of 𝜂 (𝜈 (𝑁 )), 𝑝 must
also be a 𝐺-𝐵-embedding of 𝜂 (𝜈 (𝑁 )) \ 𝜂. This is obvious with respect to definition 5.3 where all conditions true for the
residues of 𝜂 (𝜈 (𝑁 )) must also hold for the subset of those residues in 𝜂 (𝜈 (𝑁 )) \ 𝜂. Therefore “𝐺-𝐵-compatible” attacks
can only be as bad as the worst 𝐺-𝐵-embeddable 𝑝 of 𝜂 (𝜈 (𝑁 )) \ 𝜂, which the adversary does not influence.

Put simply, for geometric configurations or noise conditions where you wouldn’t expect a “good” noisy localization
result, you shouldn’t expect a “good” attack detection result (i.e with limited 𝐺-𝐵 compatible attacks). In the world of
navigation systems, Geometric Dilution of Precision (GDP) [Langley 1999] describes how the geometry of noisy range
measurements can affect localization precision for a single sensor. Even for GGR localization networks, poor geometry
on measurements may result in poor localization precision and poor attack detection. The theoretical aspects of this
subject are worthy of further research, but for now we estimate the role of geometry and network topology empirically
in our experimental evaluation by searching for maximum size 𝐺-𝐵-compatible attacks on our benchmarks.

6 RESULTS

As the correctness of Gordian and related algorithms are proved in the previous sections, our empirical evaluation is
focused on evaluating performance. In this section we evaluate the runtime of noiseless and noisy Gordian.

6.1 Experimental Setup

We implemented Gordian in Matlab 2016b, using the Yalmip toolbox [Löfberg 2004] to model the Semidefinite
Programming (SDP)s. Our implementation uses MOSEK [noa 2011] and SAT4J’s pseudoboolean solver [Le Berre 2010]
as the underlying SDP and Boolean Satisfiability Problem (SAT) solvers. Our testing platform has a quad-core Intel
Core i7-4700MQ CPU and 16GB memory.

We generated benchmark graphs by randomly dropping nodes onto a 15 by 15 grid, and connecting those points with
inter-node distances within a fixed connection radius.11 Attacks consist of 𝑠 randomly selected edges and 𝑡 randomly
selected anchors. In each benchmark, 2𝑡 + 3 nodes are randomly determined to be anchors.

6.2 Noiseless Gordian

Our goal in experimental evaluation of the Noiseless Gordian algorithm is to evaluate the efficiency of Gordian
with noiseless embeddability tests on localization networks with random attacks. We selected benchmarks for our
evaluation with the competing goals of demonstrating Gordian’s performance on a range of problem sizes while also
systematically evaluating the effects of changing 𝑠 and 𝑡 parameters on a medium-size problem. The result for each
benchmark is listed in Table 1.

In addition to the BY-SDP noiseless embeddabilty test, we also evaluate a (potentially faster) noiseless embeddability
test built from Wang et al.’s alternative edge-centric (ESDP) relaxation of equation 4.2.

11Due to scaling by𝑊 (𝑒𝑖 𝑗 ) in the denominator of edge residues, a short edge with large noise can overpower the other residues. To prevent this problem
in our evaluation we enforce a minimum measurement length of 1m before noise and 0.3m after noise.
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BM #Nodes #Edges 𝑠 𝑡 BY-SDP (s) ESDP (s) +𝛿 ′
𝑖 𝑗
−𝛿 ′

𝑖 𝑗
∥𝛼𝑖 ∥ Noisy (s) Correct Nearly Correct

1 20 176 1 2 65.87 81.67 2.1 2.8 1.6 142.40 100% 0%
2 20 170 2 2 73.54 89.65 2.2 1.9 1.4 199.23 100% 0%
3 20 170 2 3 66.22 64.74 1.9 2.0 1.5 197.77 100% 0%
4 20 160 1 3 61.01 50.87 4.5 * 1.5 152.96 80% 20%
5 20 171 4 2 74.96 91.53 2.8 1.7 1.7 354.38 60% 0%
6 20 167 4 3 74.06 93.39 1.9 2.9 1.7 * 0% 40%
7 30 310 0 1 24.91 36.64 * * 1.7 61.93 100% 0%
8 30 354 0 2 21.67 36.53 * * 1.7 76.18 100% 0%
9 30 350 0 3 30.54 50.11 * * 1.5 109.47 100% 0%
10 30 324 0 4 45.84 61.68 * * 1.4 167.29 100% 0%
11 30 289 1 0 41.60 90.04 2.6 * * 60.93 100% 0%
12 30 345 1 1 41.01 53.03 1.8 2.3 1.7 201.3 100% 0%
13 30 316 1 2 54.95 62.84 2.0 2.3 1.9 154.14 80% 20%
14 30 282 1 3 55.96 110.51 1.9 2.3 1.5 237.22 100% 0%
15 30 359 1 4 124.58 67.56 4.4 * 1.5 1259.79 40% 60%
16 30 327 2 0 77.01 98.16 1.9 2.8 * 160.36 100% 0%
17 30 312 2 1 69.78 1338.69 2.0 2.3 1.7 143.38 100% 0%
18 30 324 2 2 51.21 80.55 2.1 2.2 1.9 * 0% 100%
19 30 318 2 3 58.98 85.61 2.1 1.9 1.6 599.25 80% 0%
20 30 327 2 4 69.59 153.50 2.0 2.1 1.7 418.84 100% 0%
21 30 353 3 0 90.81 61.95 2.1 2.0 * 80.64 40% 0%
22 30 316 3 1 53.39 5160.47 1.9 2.0 3.8 129.16 100% 0%
23 30 328 3 2 61.23 81.90 2.0 2.3 1.8 377.02 60% 40%
24 30 322 3 3 79.79 95.43 2.1 1.9 1.6 445.48 80% 0%
25 30 341 3 4 155.56 282.91 1.6 1.6 1.5 696.68 100% 0%
26 30 358 4 0 51.92 113.87 2.1 2.1 * 157.69 80% 0%
27 30 352 4 1 110.54 143.50 2.0 1.9 1.6 423.38 100% 0%
28 30 359 4 2 78.94 155.10 2.0 2.4 1.6 278.66 100% 0%
29 30 369 4 3 163.39 208.32 2.4 2.3 1.6 480.68 100% 0%
30 30 372 4 4 106.03 240.63 2.2 2.0 1.6 521.96 100% 0%
31 30 397 7 0 2140.79 211.23 2.1 1.8 * 218.74 80% 0%
32 30 411 6 0 104.62 174.55 2.8 2.2 * 446.83 80% 0%
33 30 381 6 2 190.13 259.04 1.9 2.1 1.8 811.40 80% 0%
34 30 368 0 5 46.00 76.81 * * 1.6 142.25 100% 0%
35 30 372 2 7 160.67 201.96 2.3 2.0 1.4 645.57 80% 0%
36 40 716 5 7 1186.59 454.86 2.2 2.0 1.5 2671.00 100% 0%
37 40 723 5 3 267.82 382.80 1.9 2.0 1.6 1786.09 100% 0%
38 40 501 2 2 145.65 142.42 2.0 1.9 1.6 422.64 100% 0%
39 60 908 2 2 404.21 303.91 2.0 3.6 1.8 1398.83 60% 40%
40 70 1070 2 2 722.18 754.97 2.0 1.3 1.7 1383.09 80% 0%
41 80 1258 2 2 366.71 319.39 2.5 * 1.6 969.74 80% 0%

Table 1. Gordian runtime on BenchMarks (BM) using either BY-SDP or ESDP embeddability tests in the noiseless case, maximum

undetectable attacks in the noisy case, and noisy runtime with accuracy. Noiseless runtimes are averages over 6 trials. For comparison,

a brute-force (no trilateration counterexamples) BY-SDP trial took 3193.20 seconds on benchmark 1 and over 72 hours on benchmark

2 without terminating. 𝛿′ and 𝛼 values represent maximum undetectable attacks. A * in the table is a placeholder for an impossible to

collect value, either because there were no attacked edges/anchors in the benchmark or all attacked edges in the benchmark were too

short to determine an effective negative attack. Noisy runtimes are averages over the fully correct runtimes found over 5 trials. Nearly

correct trials had at most 1 misidentified attack. Benchmarks 6 and 18 had no fully correct (all attacks identified) runtimes and hence

no data point. Our explanation for this is below.

Like the BY-SDP’s rank condition for embeddability, Theorem 4.2 from [Wang et al. 2008] asserts that in the absence
of attack, when the diagonal elements of Y − X⊤X are zero, all nodes have been localized to their true locations. Since
Manuscript submitted to ACM
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an unembeddable localization network cannot simultaneously localize nodes to their true locations and achieve zero
residues, the combination of zero residues and zero 𝑡𝑟𝑎𝑐𝑒 (Y − X⊤X) certifies an embeddable ESDP solution.

In our trials of Gordian, BY-SDP vs ESDP embeddability tests usually result in roughly comparable runtimes, in
line with the expectation of the SDP trending faster on dense localization networks with fewer nodes and the ESDP
trending faster on sparse localization networks with more nodes [Wang et al. 2008]. Benchmarks 31 and 36 show
instances where the lower quality ESDP relaxation achieved a much faster runtime than the BY-SDP. Gordian’s
counterexample generation procedure is random and weighted heuristically by residues. We suspect the particular
residues generated by the BY-SDP on these trials directed the counterexample generation process to consider particularly
unproductive counterexamples. On other benchmarks such as 17 and 22, the situation was reversed and ESDP residues
were particularly unhelpful relative to BY-SDP residues.

Numerical errors and solver inaccuracies were significant challenges for implementation of embeddability tests
in our noiseless experiments where picking thresholds for “nearly zero” and “nearly rank two” required fine-tuning.
However these concerns are dwarfed by measurement error in the noisy case, which we consider for the remainder of
our evaluation.

6.3 𝐺-𝐵-Embeddability

We identified two options for relating additive SurePoint noise (𝑚𝑖 𝑗 = 𝑑𝑖 𝑗 + 𝛿 ′𝑖 𝑗 ) to the multiplicative noise model
(𝑚𝑖 𝑗 = 𝑑𝑖 𝑗 (1+𝛿𝑖 𝑗 )) assumed for Equation 5.2: obtain an equivalent 𝛿𝑖 𝑗 = 𝛿 ′

𝑖 𝑗
/𝑑𝑖 𝑗 or directly estimate 𝑑𝑖 𝑗 as 𝑑𝑖 𝑗 =𝑚𝑖 𝑗 −𝛿 ′𝑖 𝑗

to calculate residue estimates from 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑖 𝑗 =

���𝑑2𝑖 𝑗 −𝑚2
𝑖 𝑗

���/𝑚2
𝑖 𝑗
and the𝑚𝑖 𝑗 values on hand. We use this last approach

in our evaluation to determine 𝐺 values from Monte Carlo simulation.
The forth section of Table 1 addresses the performance of the 𝐺-𝐵 embeddability test12 from equation 5.5. As

discussed in Section 5.4, noise levels and the particular geometry of a benchmark determine whether an attack is 𝐺-𝐵
compatible (not detectable) or 𝐺-𝐵 effective (detectable). As we can only evaluate the runtime of Gordian when it has
effective attacks to detect, we first set out to estimate the minimum size of an effective attack on our benchmarks.

This was accomplished by starting with the attack free and noise free underlying 𝑁 of a benchmark, applying
SurePoint and anchor noise 𝜈 (𝑁 ), arbitrarily selecting a single attacked edge/attacked anchor and corrupting it with a
positive edge attack (𝑚𝑖 𝑗 = 𝑑𝑖 𝑗 + 𝛿 ′𝑖 𝑗 ), a negative edge attack (𝑚𝑖 𝑗 = 𝑑𝑖 𝑗 − 𝛿 ′𝑖 𝑗 ), or an anchor attack (𝑎𝑖 = 𝑝𝑎 (𝑖) + 𝛼𝑖 ) to
produce 𝜂 (𝜈 (𝑁 )). Starting at the noise bound we incrementally increased the magnitude of the attack ( |𝛿 ′

𝑖 𝑗
| or ∥𝛼𝑖 ∥)

until the resulting 𝜂 (𝜈 (𝑁 )) became not 𝐺-𝐵-Embeddable. The results in the 4th section of table 1 are averages across 5
trials of this process. This methodology produced useful estimates for the minimum size of a 𝐺-𝐵-effective attack in
these benchmarks given our noise conditions.

6.4 Noisy Gordian

For noisy trials, we model Θ with data obtained from Lab 11, the authors of the SurePoint Localization System [Kempke
et al. 2016]. SurePoint uses DecaWave DW1000 ultra-wideband transceivers to achieve highly accurate ranging data in
a real world enviornment. SurePoint achieves a median additive error of 0.08m with -0.59m and 0.31m as 95th percentile
errors after proccessing.

A noise profile 𝜈 was determined in the following way. Anchors were moved in a uniformly random direction a
distance sampled from a truncated normal distribution clipped at 1.0 with mean 0 and standard deviation 0.2. Bounded
12We implemented and evaluated an ESDP-style approximate embeddability test too, but determined the ESDP’s weaker relaxation has too many false
negatives, i.e. localization networks which only appear embeddable under the ESDP relaxation, to justify its use.
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additive noise was sampled uniformly at random from the SurePoint data set after eliminating the 405 out of 73414
outlier13 values of noise with absolute error value greater than 0.7. We used these thresholds (1.0 and 0.7) to calculate
𝐵𝑖 𝑗 and 𝐵𝑖 values and Monte Carlo simulation to determine the 99.9th percentile of residue sums to set 𝐺𝑒 and 𝐺𝑎

values for 𝐺-𝐵-Embeddability and Noisy Gordian experiments.
As discussed, noisy Gordian is only able to detect 𝐺-𝐵-effective attacks. Therefore for each edge attack we set

𝛿 ′
𝑖 𝑗
∈ [5, 6] and for each anchor attack ∥𝛼𝑖 ∥2 ∈ [5, 6] so all attacks would likely be over the threshold of𝐺-𝐵-effectiveness.

Edge attacks were given a 50% chance of being positive or negative.14 In this way 𝜂 was fixed for each benchmark. We
generated 5 noise profiles 𝜈 and for each profile evaluated a trial of Noisy Gordian on each 𝜂 (𝜈 (𝑁 )) of our benchmarks.

The final section of table 1 contains the results of this experiment. The average runtimes across trials yielding fully
correct attack detection results are presented in the first column. This allows a nearly apples-to-apples comparison
against runtimes in the noiseless case where correct attack detection results are always produced. Overall, Noisy
Gordian is significantly slower than corresponding noiseless problems, but is still much faster than brute force.

In the majority of trials, Noisy Gordian successfully identified the full attack. When Noisy Gordian failed in our
experiments, either it confused no more than one uncorrupted edge or anchor with a corrupted edge or anchor, or the
𝐺-𝐵-embeddability test misclassified an embeddable sublocalization network as unembeddable. In the latter case, Noisy
Gordian learns a counterexample clause that makes the SAT problem on line 5 of algorithm 1 unsatisfiable (which is
always a risk considering the 99.9% confidence intervals on 𝐺). This was what happened with benchmarks 6, 19, 21,
24, 26, 31, 32, and 33. By repeating the tests for benchmark 6 with a bigger (99.99%) confidence interval, the results
improved to 0% correct and 80% nearly correct. In summary, over all experiments, Noisy Gordian either produced a

correct result, a nearly correct result with a single error, or failed while indicating no result could be found at all.

6.5 Comparison to Voting-Based Attack Detection Algorithms

We implemented Liu et al.’s anchor attack detection algorithm from [Liu et al. 2005] and Liu et al.’s Enhanced Greedy
Algorithm (EARMMSE) for edge attack detection from [Liu et al. 2008] for comparison against Noisy Gordian. Our
implementation of EARMMSE used the noisy embeddability test presented in this paper. We refer to the combination of
these two algorithms (anchor attack detection before edge attack detection) as “Voting”.15 We selected these algorithms
for comparison against Noisy Gordian because they are two prominent secure localization algorithms from the
literature which together offer a solution to Problem 5.4 and are therefore more directly comparable to Noisy Gordian
than other prevention or filtering algorithms (referring to the taxonomy for secure localization discussed in section 2.3)
from the literature.

The results of this comparison over the noisy benchmarks are given in Table 2. On all but the largest benchmarks,
average run times for Voting were roughly comparable to Noisy Gordian. We also evaluated the average number
of false negative edges and anchors (missed detections) and false positive edges and anchors (incorrect detections)
reported by the algorithms.16 The results show Noisy Gordian modestly outperformed Voting on missed detections
and significantly outperformed Voting on incorrect detections. All missed detections we observed from Voting were
the result of missed anchors. In our experiments the EARMMSE algorithm either quickly found and eliminated the

13We eliminate outliers from the noise distribution to ensure that the only outliers in our experiments are the attacks we deliberately apply to our
benchmarks.
14If a negative attack is impossible because 𝑑𝑖 𝑗 is small and edges cannot have negative length, it is changed to a positive attack
15Liu et al. refer to a different algorithm in [Liu et al. 2008] as voting, but we feel this is an appropriate and evocative name for two algorithms which rely
upon a consensus between uncorrupted nodes to detect attacks.
16This analysis is not averaged over Noisy Gordian runs which reported an error instead of a result. As discussed in 6.4, such trials can be rerun with a
higher confidence interval on G.
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BM #Nodes #Edges 𝑠 𝑡 Noisy (s) Voting (s) (G) Missed Detections (V) Missed Detections (G) Incorrect Detections (V) Incorrect Detections
1 20 176 1 2 142.40 254.51 0 1 0 21.2
2 20 170 2 2 199.23 173.48 0 0 0 6
3 20 170 2 3 197.77 174.17 0 0.4 0 6.4
4 20 160 1 3 152.96 214.54 0.2 0.6 0.2 16.8
5 20 171 4 2 354.38 302.25 0 0.4 0 24
6 20 167 4 3 * 370.53 1 1.2 1 36.4
7 30 310 0 1 61.93 180.25 0 0 0 0
8 30 354 0 2 76.18 202.30 0 0 0 0
9 30 350 0 3 109.47 238.20 0 0.2 0 6
10 30 324 0 4 167.29 458.24 0 0.6 0 32.2
11 30 289 1 0 60.93 298.85 0 0 0 15.8
12 30 345 1 1 201.3 203.39 0 0 0 0
13 30 316 1 2 154.14 305.91 0.2 1 0.2 16.2
14 30 282 1 3 237.22 275.36 0 0.8 0 16.8
15 30 359 1 4 1259.79 446.46 0.6 0.6 0.6 32.6
16 30 327 2 0 160.36 207.40 0 0 0 0
17 30 312 2 1 143.38 567.32 0 0.2 0 44.4
18 30 324 2 2 * 432.84 1 0.4 1 32.2
19 30 318 2 3 599.25 266.04 0 0.8 0 11.4
20 30 327 2 4 418.84 393.54 0 1 0 30
21 30 353 3 0 80.64 244.48 0 0 0 0
22 30 316 3 1 129.16 350.41 0 1 0 20.6
23 30 328 3 2 377.02 639.00 0.4 0.4 0.4 48.4
24 30 322 3 3 445.48 1076.90 0 1.4 0 100
25 30 341 3 4 696.68 336.31 0 1 0 18.2
26 30 358 4 0 157.69 924.76 0 0 0 76.8
27 30 352 4 1 423.38 255.20 0 0 0 0
28 30 359 4 2 278.66 571.74 0 0 0 40.8
29 30 369 4 3 480.68 392.10 0 0.6 0 9.8
30 30 372 4 4 521.96 770.83 0 0.8 0 64.4
31 30 397 7 0 218.74 411.49 0 0 0 2.2
32 30 411 6 0 446.83 571.55 0 0 0 19.8
33 30 381 6 2 811.40 1186.01 0 0.4 0 75
34 30 368 0 5 142.25 351.32 0 0.8 0 14.4
35 30 372 2 7 645.57 571.86 0 0.8 0 35.6
36 40 716 5 7 2671.00 849.41 0 0.6 0 22
37 40 723 5 3 1786.09 1288.64 0 0.2 0 52.6
38 40 501 2 2 422.64 464.87 0 0.6 0 8.2
39 60 908 2 2 1398.83 4126.23 0.4 1.6 0.4 180.2
40 70 1070 2 2 1383.09 3307.42 0 0.8 0 91.6
41 80 1258 2 2 969.74 5406.52 0 0.4 0 97.6

Table 2. Noisy Gordian (Noisy) compared to Voting attack detection algorithm. Benchmarks and Noisy run times are the same as in

Table 1. Results are are averages over five trials. “Missed Detections” for Noisy Gordian (G) and Voting (V) are given as the average

count (over non-error runs) of true attacked edges and anchors missing from attack detection results. “Incorrect Detections” for Noisy

Gordian (G) and Voting (V) are given as the average count (over non-error runs) of detected edges and anchors missing from true

attack detection results.

true attacked edges or removed huge chunks of the network until it eventually removed the correct edge. The most
dramatic instance we observed of EARMMSE removing edges from the network was a run of benchmark 41 in which
470 edges, more than a third of the entire network, were detected and eliminated as candidate attacks.

7 CONCLUSION

We have presented Gordian, an attack detection algorithm at the distance-graph abstraction level. In the noiseless
case, we proved Gordian sound and complete for (𝑠, 𝑡)-AT input. By generalizing localization network embeddability
testing to approximate embeddability testing in the noisy case, we likewise extend Gordian to Noisy Gordian. We
evaluate our algorithms on noisy attack detection problems constructed from the error distribution of a real-world
localization system, demonstrating the practical utility of our formal reasoning based outlier detection scheme.

Gordian and Noisy Gordian consistently finished combinatorially difficult attack detection benchmarks with a
high success rate on the order of minutes instead of days. These algorithms are appropriate as a periodic check to
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identify bad actors in a long-running sensor network or general network of cyber-physical systems. Once adversarial
data are removed, localization can be made more trustworthy and more accurate.

APPENDIX

Theorem .1. Given a finite (𝑠, 𝑡)-AT localization network 𝑁 = (𝑆, 𝐸,𝑊 , 𝑝𝑎) and a ground truth placement 𝑝∗ s.t.

𝑊 (𝑒𝑖 𝑗 ) = 𝑑𝑖 𝑗 and 𝑝𝑎 = 𝑝∗ ↾𝑆𝑎 and 𝜂 ∈ 𝐻̂ (𝑠, 𝑡), Algorithm 1 is a sound and complete procedure for solving Problem 3.2

when given input 𝜂 (𝑁 ).

Proof. (Soundness) The algorithm returns with an attack hypothesis 𝜂𝑁 ′ only if 𝜂 (𝑁 ′) is consistent. But since 𝑁
was (𝑠, 𝑡)-AT, that means by definition that 𝜂 is trivial with respect to 𝑁 ′, and so 𝜂 ⊆ 𝜂𝑁 ′ .

(Completeness) Let 𝜂 be the attack hypothesis induced by 𝜂. If on line 4 we choose an (𝑠, 𝑡)-attack hypothesis 𝜁 ⪰ 𝜂,
𝜂 (𝑁 ) \ 𝜁 is consistent and the algorithm ends. Denote by 𝐶𝑖 the set of clauses at iteration 𝑖 and let 𝑆𝐴𝑇 (𝐶𝑖 ) be the set
of satisfiable assignments to𝐶 on iteration 𝑖 . Since𝐶0 simply bounds the number of attacks, clearly 𝜂 ∈ 𝑆𝐴𝑇 (𝐶).𝐶𝑖+1 is
constructed 𝐶𝑖+1 ⊇ 𝐶𝑖 (line 12) to forbid a reassignment on future iterations matching 𝜁 (line 12 last term). Specifically
𝜁 ∈ 𝑆𝐴𝑇 (𝐶𝑖 ), but 𝜁 ∉ 𝑆𝐴𝑇 (𝐶𝑖+1), and 𝑆𝐴𝑇 (𝐶𝑖+1) ⊂ 𝑆𝐴𝑇 (𝐶𝑖 ). 𝑆𝐴𝑇 (𝐶0) is finite, and so we just have to show that if
𝜂 ∈ 𝑆𝐴𝑇 (𝐶𝑖 ) and the algorithm doesn’t end, 𝜂 ∈ 𝑆𝐴𝑇 (𝐶𝑖+1).

On every iteration where the algorithm doesn’t end we add clauses to 𝐶 of the form (∨(𝑖, 𝑗) ∈E 𝑏𝑖 𝑗 ∨∨𝑘∈Sa 𝑐𝑘 ) for
some inconsistent sub-localization network. At least one of the 𝑏𝑖 𝑗 , 𝑐𝑘 must be in the true attack hypothesis 𝜂, or the
sub-localization network would be consistent (the unattacked localization network was consistent, and removing edges
or anchors can’t make it less consistent). And so 𝜂 satisfies the new added clause. □
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